Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Mark G. Morgan, Meitian Wang and Arthur Mar*

Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2

Correspondence e-mail: arthur.mar@ualberta.ca

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{Si}-\mathrm{O})=0.008 \AA$
R factor $=0.031$
$w R$ factor $=0.074$
Data-to-parameter ratio $=17.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Samarium orthosilicate oxyapatite, $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$

Samarium orthosilicate oxyapatite, $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$, contains $\mathrm{SiO}_{4}{ }^{4-}$ tetrahedra $[\mathrm{Si}-\mathrm{O} 1.611$ (7)-1.629 (5) \AA A $]$ and O^{2-} anions, separated by samarium cations in CN7 [$\mathrm{Sm}-\mathrm{O}$ 2.2428 (4)-2.641 (7) Å] and CN9 sites [$\mathrm{Sm}-\mathrm{O} 2.428$ (5)2.846 (5) Å]. The full occupancy of the samarium sites implies a mixed valency of four Sm^{3+} and one Sm^{2+} per formula unit.

Comment

Rare-earth (RE) silicate oxyapatites can be derived from the parent apatite structure, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$, by substituting Ca^{2+} with $\mathrm{RE}^{3+}, \mathrm{PO}_{4}{ }^{3-}$ with $\mathrm{SiO}_{4}{ }^{4-}$, and F^{-}with O^{2-}. There are several possibilities for maintaining charge balance. If trivalent RE is assumed, the RE sites must be partially occupied to result in a defect structure, as in $\mathrm{RE}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}(\mathrm{RE}=\mathrm{La}, \mathrm{Sm}$; Kuz'min \& Belov, 1965). Alternatively, if these sites are to remain fully occupied, they must contain a proportion of divalent cations A^{2+} such as alkaline earths, as in $(\mathrm{RE})_{4}(\mathrm{~A})\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}(\mathrm{Ito}, 1968$; Grisafe \& Hummel, 1970). Yet another possibility is to replace F^{-}, not with O^{2-}, but with N^{3-}, to form the nitridoapatite $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{~N}$ (Gaudé et al., 1975). The compound $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$ reported here has a non-defect structure, in contrast to that of $\mathrm{Sm}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$, previously determined only by photographic methods (Kuz'min \& Belov, 1965).

The structure contains discrete SiO_{4} tetrahedra (Fig. 1). The Sm 1 atoms are coordinated by O atoms in a pentagonal bipyramidal (CN7) geometry and the Sm 2 atoms in a tricapped trigonal prismatic (CN9) geometry. Atom O4 resides in a characteristic trigonal-planar site, surrounded by

Figure 1
$\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$, viewed approximately down the c axis. Colour key: Sm blue, SiO_{4}-tetrahedra yellow, O red.

Received 28 June 2002
Accepted 4 July 2002
Online 12 July 2002

Sm 1 atoms. The $\mathrm{Si}-\mathrm{O}$ distances within the tetrahedra (Table 1) are normal $[1.611$ (7)-1.629 (5) \AA] and agree well with those found in $\mathrm{Sm}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}(1.62-1.63 \AA)$. The fully stoichiometric formula $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$ implies that some divalent Sm must be present, i.e. $\left(\mathrm{Sm}^{3+}\right)_{4}\left(\mathrm{Sm}^{2+}\right)\left(\mathrm{SiO}_{4}{ }^{4-}\right)_{3}\left(\mathrm{O}^{2-}\right)$. This proposal is supported by several observations. First, consistent with the larger ionic radius of Sm^{2+} relative to Sm^{3+}, the cell parameters in $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}[\mathrm{a}=9.4959(10) \AA$ and $c=$ 7.0361 (7) \AA] are larger than in $\mathrm{Sm}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}(a=9.33 \AA$ and $c=6.85 \AA$). The $\mathrm{Sm} 1-\mathrm{O}$ distances $[2.2428(4)-$ $2.641(7) \AA$ a $]$ are similar to those in $\mathrm{Sm}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$ (2.21$2.67 \AA$) but the $\mathrm{Sm} 2-\mathrm{O}$ distances $[2.428$ (5)-2.846 (5) \AA] are distinctly longer than in $\mathrm{Sm}_{4.67}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}(2.32-2.74 \AA)$. Given the multiplicities of the $\operatorname{Sm} 1(6 h)$ and $\operatorname{Sm} 2$ (4f) sites, an ordered distribution consistent with a $4: 1$ ratio of $\mathrm{Sm}^{3+}: \mathrm{Sm}^{2+}$ is not possible. A reasonable interpretation is that the Sm 1 site contains exclusively Sm^{3+}, and the Sm 2 site contains a mixture of Sm^{3+} and Sm^{2+}. The bond-valence sums of 2.86 for Sm 1 and 2.54 for Sm 2 are in good agreement with this model (Brese \& O'Keeffe, 1991). Second, an Sr -substituted compound, $\mathrm{Sm}_{4} \mathrm{Sr}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$, is known (Ito, 1968). Consistent with the similar ionic radii of Sr^{2+} and Sm^{2+} (Shannon, 1976), its cell parameters $(a=9.51 \AA$ and $c=7.02 \AA)$ are very close to those of the title compound. Third, the crystals of $\mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O}$ are red, which is characteristic of Sm^{2+}-containing compounds, in contrast to the yellow colour of Sm^{3+}. These crystals were obtained as adventitious byproducts of a reaction in evacuated fused-silica tubes. In contrast to typical preparations of other rare-earth apatites, the low oxygen content under these reaction conditions would be consistent with Sm not being fully oxidized to the trivalent state. A compound having both rare-earth and oxygen defects, $\mathrm{Sm}_{4}\left(\mathrm{SiO}_{4}\right)_{3}$, has been reported; it is red and has cell parameters $[a=9.497$ (3) \AA and $c=$ 6.949 (3) \AA] that suggest the presence of a small amount of Sm^{2+} (McCarthy et al., 1967).

Experimental

A 0.25 g mixture of elemental samarium, gallium, and bismuth in a 1:2:1 ratio (Sm, 99.9%, Cerac; $\mathrm{Ga}, 99.9999 \%$, Alfa-Aesar; Bi , 99.999%, Cerac) was reacted in phase studies of ternary rare-earth bismuth systems. The reactants were heated in an evacuated fusedsilica tube at 1223 K for 4 d , cooled to 773 K over 4 d , and then cooled to room temperature over 1.5 d . Partial attack was observed on the walls of the silica tube, on which were deposited dark-red needleshaped crystals. Windowless semiquantitative EDX (energy-dispersive X-ray) analysis on a Hitachi S-2700 scanning electron microscope revealed the presence of Sm, Si, and O in these crystals.

Crystal data

$$
\begin{aligned}
& \mathrm{Sm}_{5}\left(\mathrm{SiO}_{4}\right)_{3} \mathrm{O} \\
& M_{r}=1044.02 \\
& \mathrm{Hexagonal}, P 6_{3} / m \\
& a=9.4959(10) \AA \\
& c=7.0361(7) \AA \\
& V=549.46(10) \AA^{3} \\
& Z=2 \\
& D_{x}=6.310 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Bruker Platform/SMART
1000 CCD diffractometer ω scans (0.2° frames)
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.179, T_{\text {max }}=0.643$
6710 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0365 P)^{2}\right. \\
& +5.6399 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=2.75 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-2.73 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0015 \text { (3) }
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Sm} 1-\mathrm{O} 4$	$2.2428(4)$	$\mathrm{Sm} 2-\mathrm{O} 2$	$2.508(5)$
$\mathrm{Sm} 1-\mathrm{O}^{\mathrm{i}}$	$2.383(5)$	$\mathrm{Sm} 2-\mathrm{O} 1$	$2.846(5)$
$\mathrm{Sm} 1-\mathrm{O}^{\text {ii }}$	$2.421(6)$	$\mathrm{Si}-\mathrm{O}^{\mathrm{iv}}$	$1.611(7)$
$\mathrm{Sm} 1-\mathrm{O} 1$	$2.497(5)$	$\mathrm{Si}-\mathrm{O} 2$	$1.623(7)$
$\mathrm{Sm} 1-\mathrm{O} 3$	$2.641(7)$	$\mathrm{Si}-\mathrm{O} 1$	$1.629(5)$
$\mathrm{Sm} 2-\mathrm{O}^{\text {iii }}$	$2.428(5)$		

Symmetry codes: (i) $y,-x+y, \frac{1}{2}+z$; (ii) $1-y, 1+x-y, z$; (iii) $x-y, x,-z$; (iv) $-y, x-y, z$.

Refinements on the absorption-corrected data were performed, in which the occupancies of successive sites were allowed to vary. These converged to values of 1.00 (4) for $\mathrm{Sm} 1,0.97$ (4) for $\mathrm{Sm} 2,1.00$ (4) for $\mathrm{Si}, 1.00$ (5) for $\mathrm{O} 1,1.12$ (5) for $\mathrm{O} 2,1.07$ (5) for O 3 , and 1.10 (7) for O4, with reasonable displacement parameters for each site. These results support a fully stoichiometric model, and the occupancies were fixed at 1.00 for all atoms in the final refinement. The atomic positions were standardized with the program STRUCTURE TIDY (Gelato \& Parthé, 1987).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.

The Natural Sciences and Engineering Research Council of Canada and the University of Alberta supported this work.

References

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1997). SMART. Version 5.051. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS. Version 5.1. Shape Software, Kingsport, Tennesee, USA.
Gaudé, J., L'Haridon, P., Hamon, C., Marchand, R. \& Laurent, Y. (1975). Bull. Soc. Fr. Mineral. Cristallogr. 98, 214-217.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Grisafe, D. A. \& Hummel, F. A. (1970). Am. Mineral. 55, 1131-1145.
Ito, J. (1968). Am. Mineral. 53, 890-907.
Kuz'min, E. A. \& Belov, N. V. (1965). Dokl. Akad. Nauk SSSR, 165, 88-90.
McCarthy, G. J., White, W. B. \& Roy, R. (1967). J. Inorg. Nucl. Chem. 29, $253-$ 254.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

